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Conditional Probabilities with a Quantal and a 
Kolmogorovian Limit 

S v e n  A e r t s  I 

Received June 11, 1996 

We give a definition for the conditional probability that is applicable to quantum 
situations as well as classical ones. We show that the application of this definition 
to a two-dimensional probabilistic model, known as the epsilon model, allows 
one to evolve continuously from the quantum mechanical probabilities to the 
classical ones. Between the classical and the quantum mechanical, we identify 
a region that is neither classical nor quantum mechanical, thus emphasizing 
the need for a probabilistic theory that allows for a broader spectrum 
of probabilities. 

1. I N T R O D U C T I O N  

In this article we want to present a two-dimensional (i.e., only two 
outcomes are related to each measurement) probabilistic model that allows 
for a quantum mechanical as well as a classical description. When we say 
classical or quantum mechanical we mean that the probabilities related to a 
measurement are the same as those that are computed by these respective 
theories. Thus, by the term probability itself (as contrasted to a CSD, which 
we will introduce shortly) we denote the limit of  the relative frequencies 
(von Mises, 191,9) and not the Kolmogorovian sense (unless explicitly 
stated) of probability with all its mathematical connotations. In order 
to talk more easily about the two situations, we will introduce the 
following abbreviations: 

• We will call a quantum statistical description (QSD) any description 
of the outcomes related to an experiment that gives rise to a set of 
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probabilities that are derivable within the context of Hilbert-space 
quantum mechanics. 
We will call a classical statistical description (CSD) any description 
of  the outcomes related to an experiment that gives rise to a set of 
probabilities that are derivable within the context of the standard 
theory of probabilities. 

Historically, the foundations of the latter were due mainly to Cardano and 
Laplace, but whenever we talk about CSD we will refer to the Kolmogorovian 
theory of probability, because of its mathematical completeness. As is well 
known, the Kolmogorovian approach is based on a probability space that is 
characterized by a triple (f~, ~, IX), where l'~ is a nonempty set, E the ~- 
algebra of subsets of ~ ,  and Ix a probability measure on E satisfying several 
conditions such as additivity. The reader may feel the need for a criterion 
that allows one to decide whether probabilities are derivable within a classical 
or a quantum context. Such criteria exist in the literature: they are called 
statistical polytopes. The most famous among these polytopes is the Bell 
inequality. However, since the Bell polytope relates to a correlation probability 
and we are going to discuss transition and conditional probabilities, we will 
not use this particular polytope. 

As pointed out by Accardi and Fedullo (1982), for the transition probabil- 
ities related to a two-dimensional measurement (that is, a measurement with 
two possible outcomes) it is sufficient to consider three (as is well known, 
Bell uses the probabilities related to four different measurements on a singlet 
state) transition probabilities to see whether they belong to a QSD or to a 
CSD. They also show that for the two-dimensional case the set of probabilities 
belonging to a CSD form a subset of the set of  probabilities belonging to a 
QSD. Gudder (1984) derived similar results (albeit through a different 
approach) for the case of a CSD. We will use his second theorem, which we 
state without proof. 

Theorem 1 (Gudder, 1984). Let 0 -< PL, P2, P3 ~ 1. Then there exist 
events A, B, C in a probability space (f~, E, Ix) such that Ix(A) = Ix(B) = 
Ix(C) = 1/2 and IX(A n B) = p~, IX(A O C) = P2, and Ix(B c N C) = P3 iff 
Pi <-pj + p k , i 4 : j 4 :  k = 1 ,2 ,3 ,  andpl  + p 2  + p 3  -< 1. 

One can easily see that not every triple p~, Pz, P3 will comply with the 
restrictions as expressed by the inequalities in this theorem. Those that will 
comply can be derived by the use of the orthodox framework of Kolmogor- 
ovian probability theory or, to express it in our language, permit a CSD. 
Besides Bell and Accardi and Gudder, we also mention the nice monograph 
on these restrictions known as polytopes by Pitovsky (1989). 



Conditional Probabilities 2247 

2. A MACROSCOPIC DEVICE PRODUCING A QUANTUM 
PROBABILISTIC STRUCTURE 

We would like to expose a very simple macroscopic device that has a 
QSD. The possibility of building such a device became clear at least as early 
as 1980, when Dirk Aerts constructed a model that could be built by any 
plumber (consisting of two communicating vessels and two siphons to perform 
the measurement) and that violates the Bell inequalities (the value the polytope 
takes is four, which is the largest violation possible). The model we are going 
to present in this article was found by Dirk Aerts in 1989, and has been one 
of the inspirations of our Brussels group. We want to emphasize that this 
model has been introduced in several previous articles and that we only 
briefly review it here so that this article is self-contained. 

The model consists of a physical entity S that is a point particle P that 
can move on the surface of a sphere, denoted s u r ,  with center O and radius 
1. The unit vector v where the particle is located on s u r  represents the state 
p~ of the particle (Fig. 1). For each point u ~ s u r  we introduce the following 
experiment eu. We consider the diametrically opposite point - u  and install 

Fig. 1. The sphere model; u represents the measurement direction, v the entity. 
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a piece of elastic of length 2 such that it is fixed with one of its endpoints 
in u and the other endpoint in - u .  

Once the elastic is installed, the particle P falls from its original place 
v orthogonally onto the elastic and sticks on it. Then the elastic breaks and 
the particle P attached to one of the two pieces of  the elastic moves to one 
of the two endpoints u or - u .  Depending on whether the particle P arrives 
at u or - u ,  we give the outcome o~ or o~ to e, , .  In Fig. 2 we represent the 
disk of the sphere where the experiment e, takes place, and we can easily 
calculate the probabilities corresponding to the two possible outcomes. 

Therefore we remark that the particle P arrives at u when the elastic 
breaks at a point of the interval L~ and arrives at - u  when it breaks at a 
point of the interval /--2 (Fig. 2). We make the hypothesis that the elastic 
breaks uniformly, which means that the probability that the particle being in 
state Pv arrives at u is given by the length of Ll (which is 1 + cos 0) divided 
by the length of the total elastic (which is 2). The probability that the particle 
in state pv arrives at - u  is the length of/12 (which is 1 - cos 0) divided by 

t l  

/ 

/ 
/ 

a 0 

Fig. 2. The intersection of the sphere with the plane (u, 0, v). 
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the length of  the total elastic. If we denote these probabilities respectively 
by P(o~', Pv) and P(o~, Pv), we have 

1 + cos 0 0 
- cos 2 - (1) P(o'~, Pv) - 2 2 

1 - cos 0 _ sin2 0 (2) 
P(o'L p,,) - 2 2 

These transition probabilities are the same as the ones related to the 
outcomes of  a Stern-Gerlach spin experiment on a spin-1/2 quantum particle 
of which the quantum-spin state in direction v = (cos qb sin 0, sin qb sin 0, 
cos 0), denoted by t~,  and the experiment e, corresponding to the spin 
experiment in direction u = (cos 13 sin or, sin 13 sin cx, cos cx), is described 
respectively by the vector and the self-adjoint operator 

1 [ cos oc e-~lSsin et / 
~v = ( e-icb/2cOS 0/2, ei+nsin 0/2), H,, = ~ \eil3sin et - c o s  ot ] 

of a two-dimensional complex Hilbert space. 
As noted on many previous occasions, the probabilities as they appear 

in this example are due to a lack of  knowledge about the measurement process. 
More precisely, we could say that we lack the knowledge of  where exactly 
the elastic breaks during a measurement. Therefore this approach was baptized 
the hidden measurement approach in contrast to the hidden variables 
approaches. More specifically, we can identify two main aspects of  the 
experiment e, as it appears in the model. 

1. The experiment e, effects a real change on the state Pv of  the entity 
S. As explained in the introduction of  the model, the state p~ changes into 
one of the states p ,  or p_ ,  by the experiment eu. 

2. The probabilities appearing are due to a lack of  knowledge about a 
deeper reality of  the individual measurement process itself, namely where 
the elastic breaks. 

One can show that these two effects give rise in general to quantumlike 
structures. One can extend these ideas to the n-dimensional case (D. Aerts, 
1986) or even to the countably infinite-dimensional case (Coecke, 1996). 
One can think of other fields of scientific interest where a model that incorpo- 
rates an intrinsic influence of the measurer on the measured would be valuable, 
such as psychology (D. Aerts and S. Aerts, 1995). For another relevant 
discussion, see Czachor (1992). 

3. T H E  CLASSICAL L I M I T  

A most interesting consequence of the sphere model is that one can 
limit the magnitude of the lack of knowledge about the measurement situation. 
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D. Aerts et al. (1993) studied the sphere model in the context of lattice theory 
under varying "lack of  knowledge," parametrizing this variation by a number 
• ~ [0, 1 ] such that • = 1 corresponds to the situation of maximal lack of 
knowledge, giving rise to a quantum structure, and • = 0 corresponds to the 
situation of  zero lack of  knowledge, generating a classical structure, and 
other values of  • correspond to intermediate situations, giving rise to a 
structure that is neither quantum nor classical. This model was called the •- 
model. We want to make an analogous study, but in the context of probabilities 
rather than lattices. Let us show how the •-model works. We start from the 
sphere model, but introduce different types of  elastics. An •-elastic consists 
of three different parts: one lower part where it is unbreakable, a middle part 
where it breaks uniformly, and an upper part where it is again unbreakable. 
By means of the parameter • in [0, 1], we fix the sizes of  the three parts in 
the following way. Suppose that we have installed the •-elastic between the 
points - u  and u of  the sphere. Then the elastic is unbreakable in the lower 
part from - u  to - • . u ,  it breaks uniformly in the part from - • - u  to • -u ,  
and it is again unbreakable in the upper part from e . u  to u (Fig. 3). 

An e, experiment performed by means of  an •-elastic shall be denoted 
by e~. 

We have the following cases: 
1. v . u  <- - • .  For a fixed Pv let us define 

eig({o~}) = { u l v . u  -< - • }  (3a) 

The particle sticks to the lower part of the •-elastic, and any breaking 
of  the elastic will pull it down to the point - u .  We have P~(o'f, pv) = 0 and 
P~(o~, P0  = 1. This explains why we have abbreviated the above-defined 
set eig({o~}), i.e., they form a deterministic subset of  the set of  all states. 

2. - •  < v . u  < ¢. Similar to the previous case, we define 

sup({o"})  = {ul - • < v . u  < ¢} (3b) 

The particle falls onto the breakable part of  the •-elastic. We can easily 
calculate the transition probabilities and find 

1 
P~(o~, Pv) = -~e ( v ' u  + •) (4a) 

P~(o~, p~) = 1 (• _ v- u) (4b) 

We see that for all u ~ sup({o"})  the outcome is uncertain. That is why we 
have called this set metaphorically the superpositionset of u. 

3. • <-- v .u .  As above, we define 

eig({o~}) = {ul•  -< v . u }  (3c) 
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eig({o }) 

/ 
/ 

-m-V 

/ 
/ 

sup({o }) 

-'Ill 

eig({o'~}) 
Fig. 3. The epsilon sphere with its different regions. 

Then the particle falls onto the upper part of the e-elastic, and any breaking 
of the elastic will pull it upward such that it arrives at u. We have P~(o~, Pv) 
= 1 and P'(o~, pv) = 0. 

3.1. Deterministic Is Not Yet Classical 

We have indicated that the limit e ---> 0 is equivalent to reducing the 
lack of  knowledge on the interaction between the measurer and the measured. 
We have also indicated that this interaction is one of  the sources of the 
nonclassical behavior of this model. Can we conclude now that this model 
has a CSD if we set e = 07 Let us test this hypothesis with the polytope 
Gudder provided which we stated in the first section of  this article. According 
to the theorem we need to find three numbers that violate the inequalities in 
order to show this model will not yet allow a CSD. Let us show this explicitly. 

Theorem 2. The transition probabilities of  the e-model with e = 0 will 
not allow a description in terms of  a probability triple. 
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Let us call A, B, and C the events that the entity will produce the result 
"up" when it is measured as being in a state u, v, and w, respectively. We 
can easily see that Ix(A) = IX(B) = IX(C) = 1/2 for any u, v, and w. Let us 
give these three vectors an explicit geometrical representation in order to 
calculate i.z(A n B) = pl, IX(A n C) = p2, IX(B c n C) = p3. Let us choose 
u, v, and w such that they are all contained in one plane, and that v is obtained 
by rotating u over an angle of  2~r/3 and w by rotating v over the same angle 
(this means that there is also an angle 2"rr/3 between w and u). Now for the 
case ~ = 0 the probability has become a Heaviside step function and we can 
easily see that, since the angle forp~ andp2 is greater than "rr/2, the probabilities 
p~ and P2 both equal zero. However, for P3 we have to take the angle between 
- v  and w, which is "rr/3 < "rr/2. Therefore P3 = 1. We see that indeed pt + 
P2 + P3 ~ 1, but that P3 > Pi + P2. We conclude that no such three events 
can be formulated in a single probability triple. For a more general proof of 
this kind, see T. Durt (1996). 

Gudder (1984) proposes a more general scheme for probability triples 
in order to see if it is possible to fit quantum mechanics in such a generalized 
theory. We will take another approach, since we would like to construct a 
model that has a Kolmogorovian probability limit. Therefore we will look 
at families of conditional probabilities. 

3.2. The Concept of  Conditional Probability 

While we can deal with transition probabilities in the domain of quantum 
mechanics, there is no such thing in the classical regime. The probability 
concept that provides a bridge between the classical and quantum regimes 
is the conditional probability. Normally the conditional probability is intro- 
duced by means of  the Bayes axiom. As is well known (for example, Gudder, 
1988) there is a serious drawback when trying to use the Bayes axiom 
in quantum mechanics: it is a nonoperational definition for noncompatible 
observables, because the observables do not take their values simultaneously. 
This is often stated as the problem of  the nonexistence of  a joint-probability 
distribution (see, however, Cohen, 1986). Still it will be clear that the prepara- 
tion of an entity is in fact a kind of conditioning for any consecutive measure- 
ment. The point is that there is a distinction between the occurrence of an 
outcome when an experiment is actually performed and the conditioning 
(preparation) on an outcome corresponding to an experiment. Following D. 
Aerts (1995), we will propose a natural extension of the concept of conditional 
probability that is operational both in the quantum and in the classical regime, 
but first we want to give a precise definition of  the conditioning: 

Definition 1. Given a situation IX of  lack of  knowledge on the states of 
an entity S described by a probability measure on this set of states X, we 
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condition the entity S on a subset Af C Of (the set of possible outcomes 
related to f )  for an experiment f if we consider during the performance of 
the experiment e only those trials where the situation of the entity before the 
experiment e is such that we can predict the outcome for the experiment f 
to occur with certainty in A I if we would decide to perform the experiment f.  

In a less precise language one could say that conditioning is equivalent 
to a change of the situation ~ before the experiment in such a way that the 
experiment f would give with certainty an outcome in Af if it would be 
executed. The new situation of lack of knowledge is described by the probabil- 
ity measure that we shall denote by Ixai: ~ ( E )  "--> [0, 1]. It is defined as 
follows; for an arbitrary subset K C 

IXAI(K) = Ix(K f') eig(Ai))/tx(eig(Af)) (5) 

Now that we have introduced this concept of "conditioning" on an experiment, 
we can introduce the general concept of conditional probability. 

Definition 2. Given a situation Ix of lack of knowledge on the states of 
an entity described by the probability measure ix, and given two experiments 
e and f,  then we want to consider the conditional probability P(Ae, Af, IX) 
that the experiment e makes occur an outcome in the set Ae when the situation 
is conditioned on the set Af for the exper imentf  The conditional probability 
is a map P: ~(Oe) × ~ ( 0  i) × At(E) --> [0, 1]. 

One can see how this definition reduces to the Bayes axiom if there are 
no state transitions, because there is no longer any difference between a 
possible and an actual performed measurement (see Definition 1). Also one 
can see how this probability is the one that is measured in the laboratory of 
an experimental quantum physicist (because the preparation of a state is in 
fact nothing more than stating that if we would repeat the experiment, we 
would have the same outcome with probability one). 

We suggest to calculate this operational definition of conditional proba- 
bility on the e-model and analyze the probabilistic structure that emerges. In 
particular we want to show how the conditional probability on the e-model 
evolves continuously from the quantum transition probability for the case of  

= 1 to a classical Kolmogorovian probability satisfying Bayes' formula 
for the case ¢ = 0. We shall also point out that for a region of intermediate 
values of ~ the conditional probability is neither the quantum transition 
probability nor the classical Bayesian conditional probability. 

3.3. The Conditional Probability and the c-Model 

Given a situation Ix of  lack of knowledge about the state of the point 
particle described by a uniform probability measure on the sphere corresponds 
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to the situation where the particle P is distributed at random on the sphere. 
For a fixed e, there are also given the two experiments e~ and e~. In general 
we consider the conditional probability for arbitrary elements in the set of 
measurable subsets of the outcome sets for the two experiments. Since to 
calculate the conditional probability in the e-model we only need one 
experiment e~, with conditioning on w and with two outcomes o'{, o~, we hope 
the reader will forgive us for changing the heavy notation for a lighter one. 
We shall denote the conditional probability that the experiment e~ gives the 
outcome o'~' (respectively o~) when the entity is conditioned for the outcome 
o~ ~ of the experiment e~ by p(o'~lo~ ~) = p(e, u, w), respectively p(~, - u ,  w). 
We have, of course, 

p(u~lo~) + p(o~lo~ ~) = p(~, u, w) + p(e, - u ,  w) = 1 

Thus the conditional probability p(e, u, w) is the probability that the 
experiment e~ gives the outcome o~ if the entity is conditioned on the outcome 
o~" for the experiment e,~. This means that the lack of knowledge on the states 
is such that if we would decide to perform the experiment e~, the outcome 
o~' would come out with certainty. In other words (see Fig. 4), the state of  
the entity is such that the probability of the particle being in the spherical 
sector is distributed uniformly inside the spherical sector eig({o]~}), the gray 
area in Fig. 4. The explicit calculation of  this conditional probability can be 
seen to become a surface integral with the transition probability as the inte- 
grand, but now with w as a function of the infinitesimal surface element. 

The actual calculation of the integral is complicated by the fact that one 
has to use a different integrand for different regions. Indeed, as can be seen 

*U 

~ eig({0~'}) 

Fig. 4. The dotted part represents all possible states that correspond to our conditioning, The 
shaded region represents those states that will evolve deterministically toward +u  when mea- 
sured in that direction. We denote this region I~l = eig({o~}) f'l eig({o~}). 
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from Fig. 5a, the region where eig({o]~'}) and eig({oT}) intersect contributes 
in a deterministic way to the probability in the sense that if the entity would 
be in this region it would always give an outcome o~'. Likewise, if the entity 
would be in the region eig({o]~'}) N eig({o~}) it would never contribute to 
the outcome o'~. This means that for this first region the integrand becomes 
1, while for the second region it becomes O. 

Let us introduce the following abbreviations (see Fig. 5a): 

lq o = eig({o~}) N eig({o]~'}) 

~.~ = sup({o"}) N eig({o]~'}) 

f~l = eig({o]'}) N eig({o]~'}) 

lq,ot = ~ 0  U ~ U ~L = eig({o]~'}) 

(6a) 

(6b) 

(6c) 

(6d) 

~s W 

'Ix 
W 

' ' 

Fig. 5. (a) The different integration regions. (b) The different segments that close lls. 

a 

b 
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One can very easily calculate when these spherical sectors we have 
identified as l't0, f~s, and Ot  come into action. One can indeed see that f~0 
is not empty as soon as e < sin(ct/2). Likewise we find that ~1 contributes 
to the integral as soon as e > cos(cd2). 

The superposition region that we have called ~.~ will contribute as long 
as sin(ct/2) < e < cos(ed2). 

The actual integral that needs to be calculated can be written as 

I=tfnoO'dlq°+fln 2e d~s+ff  fl l.dl)~ 
! 

(7) 

The conditional probability is proportional to this integral, the constant 
of  proportionality being the normalization factor. This is easily found to be 
equal to the surface area of  the spherical sector around w that we have called 

eig({o~(}) = l)to t. 
Let us denote by 1) 0, f l  l, and lIs not only the sets themselves, but also 

whenever they appear "plainly" (that is, not as a differential or as a boundary) 
as the respective surface areas belonging to these sets. It is easy to see that 
~'~tot = 2"rr(l - e). 

Putting this together, we find that the quantity we need to calculate is 

p ( ~ , u , w ) = ~ t o t  O l + • 2e 

o r  

p ( e , u , w )  = ~ - -  ~ l  + " + -  u ' w d O ,  
2 2e 

(8) 

Since w is always perpendicular to the surface of  the sphere and has 
norm l, it can be considered as a surface normal: 

w d ~ s  = d ~ s  

By use of Gauss' theorem, we may rewrite the integral to contain only 
surfaces that are related to the sphere, which eliminates the difficult problem 
of integrating the scalar product. However, in order to apply Gauss' theorem, 
we need to have a closed surface and thus we need to close sq s by arbitrary 
surfaces. If we take the three segments of  the circles that close the spherical 
caps (see Fig. 5b) and call the surfaces related to these two segments f~6, 
II~, and l't~, we can write 

D~o~d = D~ + D~ + D~ 
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For this ~'~closed w e  may apply Gauss' theorem: 

closed 

Since u is a constant vector, V-u  becomes zero. Therefore we have 

ffnu'dn'+ff u'dn6+ffn, udn +ffnudn =° 
Let ot be the angle between the two vectors u and w. We can easily see 

(Fig. 5b) that, since the normal to the surface 12~ (resp. 126) is parallel (resp. 
antiparallel) to u, 

I / n  u - d l ' ~ s = c o s ( c O . l ~ + f ~ - 1 2 ~  (9) 
$ 

Using (6d), (8), and (9), we are finally able to express the conditional 
probability in terms that relate only to surfaces on and in the sphere: 

1 
p(~, u, w) = ~ [12,o~ + f~, - f~0 + ~-~(cos(~)f~ + 126 - f~) ]  (10) 

We present a graph of this function in Fig. 6. An explicit function of only 
• and c~ is easily obtained. Since the result is rather long (see the Appendix) and 
does not contribute to an understanding of the way the two limits arise, we shall 
derive the classical and quantum mechanical limits (e --~ 0 and e --> 1) directly 
on this last result. 

3.3.1. The Classical Case (e = O) 

If e --~ 0 we can see that there are no longer any superposition zones. 
Therefore we have 

12~ = ~¢ = 0 

We can also see that 126 = 12~. The conditional probability (10) becomes 

I 12, 
p(e = O, u, w) 212tot [~tot + 12, - 1)o] 12tot (11) 

Now suppose one is asked what the probability is that the entity would 
be found in the upper half of  the sphere (eig( { o'~ }) when we know for certain 
that it resides in eig({o]~}) = 12tot. If one would apply Bayes' axiom with a 
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uniform probability measure ~, using (6c) and (6d), one would come up with 
the following result: 

~(eig({o~}) n eig({o~(})) 121 
- ( 1 2 )  

~( eig( { o~V } ) ) lqtot 

This is exactly (11), which we found for the e --~ 0 case. 

3.3.2. The Quantum Case (e = 1) 

In this case, 

f ~  = f~0 = ~ = f ~  = 0 

The conditional probability (10) then becomes 

1 
p(~ = 1, u, w) 2fltot [lqt°t + cos(a)O~] 

But if ~ ---) 1 we find that ~'~tot = ~-~s = ~"~s: 

p ( e =  l , u , w ) -  l 2(a)  2~r-,~tot [~-~tot + ,-Q-tot cos(a)] = cos ~ (13) 

which is the well-known quantum transition probability (1) between the states 
p, and p~. 

Of course, these limits may also be obtained by use of the explicit 
expression from the Appendix. If one does so, one finds that the limits are 
well defined and one arrives at the same results. A look at the graph in Fig. 
6 shows that indeed the conditional probability p(~, u, w) evolves continuously 
from the quantum transition probability between the states Pu and p,, to a 
linear function of the angle between the two vectors u and w which satisfies 
the Bayes axiom. 

3.3.3. An Intermediate Situation of  the e-Model That Is Neither Classical 
nor Quantum 

For a certain interval of intermediate values ofe  the conditional probabili- 
ties of the e-model cannot be fitted into a quantum probability model or into 
a classical probability model. As pointed out in the introduction, Accardi 
and Fedullo (1982) proved that for a two-dimensional measurement the set 
of possible probabilities in a CSD constitute a subset of the possible probabili- 
ties of a QSD. Therefore it is sufficient to show that for an interval of 
intermediate e values the set of probabilities related to the outcomes of three 
measurements does not fit in a two-dimensional Hilbert-space description. 
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This we have done elsewhere (D. Aerts and S. Aerts, 1995) and we will not 
repeat the proof here. 

4. CONCLUSIONS 

We have briefly repeated that it is possible to recover the quantum 
mechanical probabilities if one assumes that there is a lack of knowledge about 
the measurement situation rather than about the entity under observation. 
This lack of  knowledge can be parametrized. Together with the notion of 
conditional probability this leads to a model that incorporates a quantum 
and a classical statistical description. This result is intriguing because the 
mathematical theories that describe quantum and classical phenomena (i.e., 
Hilbert-space quantum mechanics and Kolmogorovian probability theory) 
are very distinct and it is not clear how one could proceed to form a bridge 
between them. What is somewhat disappointing is the fact that all results are 
derived for measurements with only two possible outcomes. We believe the 
essential content of the results (the classical and quantum mechanical limits) 
can be carried over to measurements with more outcomes, although the actual 
calculation could prove difficult. Lastly we point out that in the intermediate 
region the probabilities of the model are not contained in a classical or in a 
quantum mechanical framework, challenging the commonly held view that 
a set of probabilities needs to fit in either one of the descriptions. 

APPENDIX 

An explicit representation of the conditional probability as a function 
of c~ and ~ is easily obtained from (10) because the surfaces that appear in the 
formula for the conditional probability are related to simple circle segments (S. 
Aerts, 1994): 

P(et,~)=PIH@-cos2) + H@ - sin 2 ~ 2 H ( c o s  2 - ¢ ) 

where H(x) is the Heaviside function and 

cos~( l  + e) + 1 
P~ = 4e 2 

1 + to(u,w) cosct + 1 cr(u,w) 
P2 = Pl + ~ 4rr(1 - e) + 4"rre(l - e) 

to(u, w) - to(-u, w) (cos ~t - 1)tr(-u, w) + (cos a + 1)ty(u, w) 
P3 = P l  + + 4"tr(1 - e) 4~e(1 - e) 
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where 
l/2 

to(a, e) = 4e Arccos [  1 - (e/cos(od2)) 2] sin(a/2) 
--_ ~ j - 4 Arcsin [(1 - e z] u2 

L,* 

and ()[ 1]'" [ e tg(a/2) ] 
or(a, e) = e tg ~ 1 - costa/Z) - (1 - e2) Arccos ,(~ "2 e-'fjqTzj 

ACKNOWLEDGMENT 

The author wishes to thank Dirk Aerts for the many inspiring talks they 
shared that eventually led to this article. 

REFERENCES 

Accardi, L., and Fedullo, A. (1982). On the statistical meaning of the complex numbers in 
quantum mechanics, Nuovo Cimento, 34, 161-173. 

Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics, Journal 
of Mathematical Physics, 27, 202. 

Aerts, D. (1987). The origin of the non-classical character of the quantum probability model, 
in Information, Complexity, and Control in Quantum Physics, A. Blanquiere et aL, eds., 
Springer-Verlag, Berlin. 

Aerts, D. (1991). A macroscopical classical laboratory situation with only macroscopical 
classical entities giving rise to a quantum mechanical probability model, in Quantum 
Probability and Related Topics, Vol. VI, L. Accardi, ed., World Scientific, Singapore. 

Aerts, D. (1995). International Journal of Theoretical Physics, 34(8), 1165-1186. 
Aerts, D., and Aerts, S. (1994). Applications of quantum statistics in psychological studies of 

decision processes, Foundations of Science, 1, 85-97. 
Aerts, D., Durt, T., Grib, A. A., Van Bogaert, B., and Zapatrin, R. R. (1993). Quantum structures 

in macroscopical reality, International Journal of  Theoretical Physics, 32, 489. 
Aerts, S. (1994). A bridge from quantum to classical, The conditional probability for the 

epsilon model, Graduation Thesis, Free University of Brussels (VUB), University of 
Antwerp (UIA). 

Coecke, B. (1996). Generalization of the proof on the existence of hidden measurements with 
an infinite set of outcomes, Foundations of  Physics Letters, to appear. 

Cohen, L. (1986). Joint quantum probabilities and the uncertainty principle, in New Techniques 
and Ideas in Quantum Measurement Theory, D. M. Greenberger, ed., New York Academy 
of Sciences. 

Czachor, M. (1992). On classical models of spin, Foundations of Physics, 5, 249. 
Durt, T. (1996). From quantum to classical, a toy model, Ph.D. Thesis, Free University 

of Brussels. 
Foulis, D., and Randall, C. (1972). Journal of Mathematical Physics, 1972, 1667. 
Gudder, S. P. (1984). Reality, locality and probability, Foundations of Physics, 14( I 0), 997-1011. 
Gudder, S. P. (1988). Quantum Probability, Academic Press, New York. 
Pitovski, I. (1989). Quantum Probability-Quantum Logic, Springer-Verlag, Berlin. 
Von Mises, R. (1919). Mathematische Zeitschrift, 4, 1. 


